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Introduction to Fraunhofer Lighthouse project ShaPID 

 Fraunhofer is tackling current challenges faced by industry.

 Its internal lighthouse projects put the focus on strategic objectives with a view to developing practical 

solutions from which especially German and European economies can benefit. 

 By pooling their expertise and involving industrial partners at an early stage (advisory board), the Fraunhofer 

institutes involved in the projects aim to turn original scientific ideas into marketable products as quickly as 

possible.

 ShaPID (Shaping the Future of Green Chemistry by Process Intensification and Digitalization) is one of these 

project (01/2021-06/2024)

 Involved Fraunhofer institutes: ICT (coordination), IAP, IFF, IGB, IMM, IME, ISC, ITWM, UMSICHT

 More information: https://www.shapid.fraunhofer.de/en.html (last access: 24.03.2025)
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Introduction – background and context
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General motivation and target in ShaPID – pooling of Fraunhofer competences
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Introduction – background and context

Source: stock.adobe.com
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Introduction – background and context

Source: stock.adobe.com
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Process cascade for the production of green polymers from CO2 and electric energy

 Transformation of society to more sustainablity use of renewable materials for the manufacturing industry

 polymer materials about 400 million tons worldwide (2021)  largest share produced from fossil resources

 move to renewable feedstock basis like from mechanical or chemical recycling of plastic materials, biomass, 

and CO2.

 CO2 as raw material offer high scalability and sustainability.

 Different approaches, e.g.:

 Direct reaction of CO2 with expoxides to form polycarbonates

 Synthesis of traditional or new monomers through reductive conversion of CO2

 E.g. reduction to methanol followed by conversion via Methanol-to-Propylene process into propylene

 Processes targeting other and more complex and valuable polymer building blocks ShaPID example
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Introduction – background and context – demonstration process in ShaPID

J. T. Fabarius et al., Chem. Ing. Tech. 2024, 96, No. 5, 698-712. DOI: 10.1002/cite.202400002 . CC BY-NC-ND 4.0 - https://creativecommons.org/licenses/by-nc-nd/4.0/
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Process cascade for the production of green polymers from CO2 and electric energy

 Novel process cascade combining advantages of electrochemical CO2 conversion with the synthetic potential of

industrial biotechnology:

 Electrocatalytic reduction of CO2 to formic acid

 Formic acid as substrate for the metabolically engineered bacterium Methylorubrum extorquens: production of

1,5-diaminopentane (cadavarine) via L-lysine as precursor

 Purification of cadaverine via targeted downstream processing

 Usage in a polycondensation process to produce polyamide materials
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Process cascade for the production of green polymers from CO2 and electric energy
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Introduction – background and context – demonstration process in ShaPID

J. T. Fabarius et al., Chem. Ing. Tech. 2024, 96, No. 5, 698-712. DOI: 10.1002/cite.202400002 . 
CC BY-NC-ND 4.0 - https://creativecommons.org/licenses/by-nc-nd/4.0/

1,5-DAP: 1,5-diaminopentane
DSP: downstream processing

1,5-DAP: highly interesting 
monomer for the production of 
polyamide materials but not 
available from conventional 
petroleum-based sources.

Novel polymer 
structures with 
properties not 
described  so far
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Process cascade for the production of green polymers from CO2 and electric energy
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Introduction – background and context – demonstration process in ShaPID

J. T. Fabarius et al., Chem. Ing. Tech. 2024, 96, No. 5, 698-712. DOI: 10.1002/cite.202400002 . 
CC BY-NC-ND 4.0 - https://creativecommons.org/licenses/by-nc-nd/4.0/

1,5-DAP: 1,5-diaminopentane
DSP: downstream processing

 Electrochemical reduction as stand-alone process: 

alkaline conditions favorable. 

 But alkaline catholytes based on KOH  or K2CO3

are incompatible with the following fermentation 

process.

  Design of catalyst material for less alkaline 

regimes necessary.
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Approach: electrochemical formate production – electrolysis cell
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Electrocatalysis platform in ShaPID for the demo process

J. T. Fabarius et al., Chem. Ing. Tech. 2024, 96, No. 5, 698-712. DOI: 10.1002/cite.202400002 . 
CC BY-NC-ND 4.0 - https://creativecommons.org/licenses/by-nc-nd/4.0/

 Liquid catholyte

 Phosphate buffer at 

pH >> 7 as electrolyte
 Cathode area: 123 cm2

 GDL: Freudenberg GmbH + coating

with tin-based electro catalysts

 Cation exchange membrane: Fumasep F-10150-PTFE

 Ir mixed metal oxide anode from

Special Anodes B.V.

 1.6 mm thick compartments
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Approach: electrochemical formate production – experimental results

04.04.2025 © Fraunhofer IMMSeite 10

Electrocatalysis platform in ShaPID for the demo process

J. T. Fabarius et al., Chem. Ing. Tech. 2024, 96, No. 5, 698-712. DOI: 10.1002/cite.202400002 . CC BY-NC-ND 4.0 - https://creativecommons.org/licenses/by-nc-nd/4.0/

Recirculation of 500 mL 1 M phosphate buffer. Current density: 81 mA cm-2.

(const.) production rate of  0.82 mmol cm-2 h-1
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Approach: electrochemical formic acid production – electrolysis cell
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Electrocatalysis platform in ShaPID for the demo process

 Formic acid solutions free of electrolyte

salts are advantageous as feed stream 

for fermentation.

 Exploration of cell configuration zero-

gap cathodic and anodic half-cells.

 Catholyte-free process*

*K. T. Park et al., Angew. Chem. Ing. Tech. 2018, 57, 
6883-6887.

J. T. Fabarius et al., Chem. Ing. Tech. 2024, 96, No. 5, 698-712. DOI: 10.1002/cite.202400002 . CC BY-NC-ND 4.0 - https://creativecommons.org/licenses/by-nc-nd/4.0/
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Approach: electrochemical formic acid production – first experimental results
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Electrocatalysis platform in ShaPID for the demo process

 First investigations done, more needed.

 Mixture of formic acid, formate formed, FE 12%.

 Potential:* 

 no loss of formic acid/formate by diffusion into the anolyte observed

 stable process parameters

 performance tunable by CO2/water vapor ratio

 Further studies to improve process – parameters: anolyte composition, 

electrocatalyst, current density, temperature, type of membrane, etc.

1 M KOH aq

J. T. Fabarius et al., Chem. Ing. Tech. 2024, 96, No. 5, 698-712. DOI: 10.1002/cite.202400002 . CC BY-NC-ND 4.0 - https://creativecommons.org/licenses/by-nc-nd/4.0/

*Exemplary results from K. T. Park et al., Angew. Chem. Ing. Tech. 2018, 57, 6883-6887: 41.5 g L-1 formate concentration, 343 K, 
PCD 51.7 mA cm-2 , FE 93.3% at 2.2 V. Energy efficiency (other parameters) at best 64.7%. Commercial tin catalyst.
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Approach: electrochemical formic acid production – cell development
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Electrocatalysis platform in ShaPID for the demo process

J. T. Fabarius et al., Chem. Ing. Tech. 2024, 96, No. 5, 698-712. DOI: 10.1002/cite.202400002 . CC BY-NC-ND 4.0 - https://creativecommons.org/licenses/by-nc-nd/4.0/
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Approach: electrochemical formic acid production – fabrication steps
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Electrocatalysis platform in ShaPID for the demo process

 Additive manufacturing to produce the current collector plates with their complex internal fluid distribution 

structures.

 Creation of microchannels as fluid distribution structures on the smooth surface of the plates by milling.

 Surface coating (e.g., with PTFE) of the plates.

 Removal of the polymer coating from the channel bar (cathode side) and from the periphery frame (anode side) by 

milling to enable the electrical contacting of the electrodes.

 Galvanic deposition of platinum on the free metal surface areas for better electrical contact and corrosion 

protection.

J. T. Fabarius et al., Chem. Ing. Tech. 2024, 96, No. 5, 698-712. DOI: 10.1002/cite.202400002 . CC BY-NC-ND 4.0 - https://creativecommons.org/licenses/by-nc-nd/4.0/
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Approach: electrochemical formic acid production – complete reactor
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Electrocatalysis platform in ShaPID for the demo process

 Scale-up will be adressed through stacking of

multiple cells

 The design both for electrode plates and press 

follows a general concept applicable, adjustable for

other purposes

J. T. Fabarius et al., Chem. Ing. Tech. 2024, 96, No. 5, 698-712. DOI: 10.1002/cite.202400002 . CC BY-NC-ND 4.0 - https://creativecommons.org/licenses/by-nc-nd/4.0/
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Reactor concept
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Modular and Scalable Electrochemical Microreactor for Versatile Applications

 Flexible and scalable reactor concept

 3-D printed electrodes with integrated heat 

exchanger

 PTFE coating for insulation

 Microstructured electrode surface

ValueParameter

56#Microchannels

150 μmElectrode distance

42.6 cm2Ages

0.64 cm3Vges

Up to 20 cells in parallel operation 

A. Ziogas, C. Hofmann, S. Baranyai, P. Löb, G. Kolb, Chemie Ingenieur Technik 2020, 92, 513.
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Reactor concept & concept for scale-up
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Modular and Scalable Electrochemical Microreactor for Versatile Applications

HEM

Electrolyte

Lab 
scale

Pilot 
scale

Increased 
Throughput
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Application examples
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Modular and Scalable Electrochemical Microreactor for Versatile Applications

2CO3
- -2e

-

C2O6
2-

2H2O
+2e

-

H2 + 2OH
-

Cation-Flow-Methode

Kolbe Electrolysis

Peroxodicarbonate

C-C Coupling of Phenols 
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Validation of scalability of reactor concept by numbering-up
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Modular and Scalable Electrochemical Microreactor for Versatile Applications

Proof-of-Concept scalability by numbering-up

Kolbe Electrolysis with up to 10 cells in parallel 

 ca. 1.4 kg/h fatty acid conversion; 0.85 kg/h productivity

 20 cells: 3-5 kg/h conversion, 2-3 kg/h productivity (depending on substrate)

 Validation for Kolbe Electrolysis

N. Baumgarten, B. J. M. Etzold, J. Magomajew, A. Ziogas, ChemistryOpen 2022, 11, e202200171513. doi.org/10.1002/open.202200171
CC BY 4.0 - https://creativecommons.org/licenses/by/4.0/
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Modular electrochemical cells for screening purposes
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Modular and Scalable Electrochemical Microreactor for Versatile Applications
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Modular electrochemical cells for screening purposes
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Modular and Scalable Electrochemical Microreactor for Versatile Applications

https://www.fraunhofer.de/en/press/research-news/2023/september-2023/modular-flow-cells-for-sustainable-chemistry.html (last access 06.01.25)

© Fraunhofer IMM© Fraunhofer IMM
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Summary
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Flow reactors for the electrochemical CO2 reduction and beyond

Integration of electrochemical CO2 reduction in a novel process cascade to 
produce novel green polymers 

Promising catholyte free process route to formic acid explored

Modular and scalable reactor design for broader applicability introduced

Application for screening purposes outlined
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Thank you for
your attention!
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